Mechanism-based inactivation of cytochrome P450 3A4 by 17 alpha-ethynylestradiol: evidence for heme destruction and covalent binding to protein.
نویسندگان
چکیده
17 alpha-Ethynylestradiol (EE), a major constituent of many oral contraceptives, inactivated the testosterone 6 beta-hydroxylation activity of purified P450 3A4 reconstituted with phospholipid and NADPH-cytochrome P450 reductase in a mechanism-based manner. The inactivation of P450 3A4 followed pseudo first order kinetics and was dependent on NADPH. The values for the K(I) and k(inact) were 18 microM and 0.04 min(-1), respectively, and the t(1/2) was 16 min. Incubation of 50 microM EE with P450 3A4 at 37 degrees C for 30 min resulted in a 67% loss of testosterone 6 beta-hydroxylation activity accompanied by a 35% loss of the spectral absorbance of the native protein at 415 nm and a 70% loss of the spectrally detectable P450-CO complex. The inactivation of P450 3A4 by EE was irreversible. Testosterone, an alternate substrate, was able to protect P450 3A4 from EE-dependent inactivation. The partition ratio was approximately 50. The stoichiometry of binding was approximately 1.3 nmol of an EE metabolite bound per nmol of P450 3A4 inactivated. SDS-polyacrylamide gel electrophoresis analysis demonstrated that [(3)H]EE was irreversibly bound to the P450 3A4 apoprotein. After extensive dialysis of the [(3)H]EE inactivated samples, high-pressure liquid chromatography (HPLC) analysis demonstrated that the inactivation resulting from EE metabolism led to the destruction of approximately half the heme with the concomitant generation of modified heme and EE-labeled heme fragments and produced covalently radiolabeled P450 3A4 apoprotein. Electrospray mass spectrometry demonstrated that the fraction corresponding to the major radiolabeled product of EE metabolism has a mass (M - H)(-) of 479 Da. HPLC and gas chromatography-mass spectometry analyses revealed that EE metabolism by P450 3A4 generated one major metabolite, 2-hydroxyethynylestradiol, and at least three additional metabolites. In conclusion, our results demonstrate that EE is an effective mechanism-based inactivator of P450 3A4 and that the mechanism of inactivation involves not only heme destruction, but also the irreversible modification of the apoprotein at the active site.
منابع مشابه
Characterization of Ritonavir-Mediated Inactivation of Cytochrome P450 3A4 s
Ritonavir is a human immunodeficiency virus (HIV) protease inhibitor and an inhibitor of cytochrome P450 3A4, the major human hepatic drug-metabolizing enzyme. Given the potent inhibition of CYP3A4 by ritonavir, subtherapeutic doses of ritonavir are used to increase plasma concentrations of other HIV drugs oxidized by CYP3A4, thereby extending their clinical efficacy. However, the mechanism of ...
متن کاملThe Inactivation of Cytochrome P450 3A5 by 17 - Ethynylestradiol Is Cytochrome b5-Dependent: Metabolic Activation of the Ethynyl Moiety Leads to the Formation of Glutathione Conjugates, a Heme Adduct, and Covalent Binding to the Apoprotein
17 -Ethynylestradiol (EE) inactivates cytochrome P450 3A5 (3A5) in the reconstituted system in a mechanism-based manner. The inactivation is dependent on NADPH, and it is irreversible. The inactivation of 3A5 by EE is also dependent on cytochrome b5 (b5). The values for the KI and kinact of the 7-benzyloxy-4-(trifluoromethyl)coumarin O-debenzylation activity of 3A5 are 26 M and 0.06 min , respe...
متن کاملMechanism-Based Inactivation of Cytochrome P450 3A4 by 17 -Ethynylestradiol: Evidence for Heme Destruction and Covalent Binding to Protein
17 -Ethynylestradiol (EE), a major constituent of many oral contraceptives, inactivated the testosterone 6 -hydroxylation activity of purified P450 3A4 reconstituted with phospholipid and NADPH-cytochrome P450 reductase in a mechanismbased manner. The inactivation of P450 3A4 followed pseudo first order kinetics and was dependent on NADPH. The values for the KI and kinact were 18 M and 0.04 min...
متن کاملCharacterization of ritonavir-mediated inactivation of cytochrome P450 3A4.
Ritonavir is a human immunodeficiency virus (HIV) protease inhibitor and an inhibitor of cytochrome P450 3A4, the major human hepatic drug-metabolizing enzyme. Given the potent inhibition of CYP3A4 by ritonavir, subtherapeutic doses of ritonavir are used to increase plasma concentrations of other HIV drugs oxidized by CYP3A4, thereby extending their clinical efficacy. However, the mechanism of ...
متن کاملClinical outcomes and management of mechanism-based inhibition of cytochrome P450 3A4
Mechanism-based inhibition of cytochrome P450 (CYP) 3A4 is characterized by NADPH-, time-, and concentration-dependent enzyme inactivation, occurring when some drugs are converted by CYPs to reactive metabolites. Such inhibition of CYP3A4 can be due to the chemical modification of the heme, the protein, or both as a result of covalent binding of modified heme to the protein. The inactivation of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 301 1 شماره
صفحات -
تاریخ انتشار 2002